Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Thorax ; 77(7): 717-720, 2022 07.
Article in English | MEDLINE | ID: covidwho-1769953

ABSTRACT

Given the large numbers of people infected and high rates of ongoing morbidity, research is clearly required to address the needs of adult survivors of COVID-19 living with ongoing symptoms (long COVID). To help direct resource and research efforts, we completed a research prioritisation process incorporating views from adults with ongoing symptoms of COVID-19, carers, clinicians and clinical researchers. The final top 10 research questions were agreed at an independently mediated workshop and included: identifying underlying mechanisms of long COVID, establishing diagnostic tools, understanding trajectory of recovery and evaluating the role of interventions both during the acute and persistent phases of the illness.


Subject(s)
COVID-19 , Adult , COVID-19/complications , Caregivers , Disease Progression , Health Priorities , Humans , Research Personnel , Post-Acute COVID-19 Syndrome
2.
PLoS Pathog ; 18(3): e1010181, 2022 03.
Article in English | MEDLINE | ID: covidwho-1765546

ABSTRACT

Transmission efficiency is a critical factor determining the size of an outbreak of infectious disease. Indeed, the propensity of SARS-CoV-2 to transmit among humans precipitated and continues to sustain the COVID-19 pandemic. Nevertheless, the number of new cases among contacts is highly variable and underlying reasons for wide-ranging transmission outcomes remain unclear. Here, we evaluated viral spread in golden Syrian hamsters to define the impact of temporal and environmental conditions on the efficiency of SARS-CoV-2 transmission through the air. Our data show that exposure periods as brief as one hour are sufficient to support robust transmission. However, the timing after infection is critical for transmission success, with the highest frequency of transmission to contacts occurring at times of peak viral load in the donor animals. Relative humidity and temperature had no detectable impact on transmission when exposures were carried out with optimal timing and high inoculation dose. However, contrary to expectation, trends observed with sub-optimal exposure timing and lower inoculation dose suggest improved transmission at high relative humidity or high temperature. In sum, among the conditions tested, our data reveal the timing of exposure to be the strongest determinant of SARS-CoV-2 transmission success and implicate viral load as an important driver of transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Mesocricetus , Pandemics , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL